Friday, May 11, 2018

Scientific Revolutions #1

I intended to borrow Thomas Kuhn's The Structure of Scientific Revolutions from the library to read it again after several years. Then I saw It Started With Copernicus by Keith Parsons on the shelf and borrowed it instead.

Here is another article about Kuhn and his book. Published in 1962, it attracted much attention with its ideas of paradigm, normal science, and incommensurability, with different paradigms being incommensurable. Parsons states three kinds of incommensurability in Kuhn's book (Chapter 2). They are about standards, values, and meaning (or semantics).

Standards pertains to what constitutes good science. Parsons' first example is why versus how as it pertained to Newton's position on gravity. "Must a theory of motion explain the cause of the attractive motion between particles of matter, or may it simply note the existence of such forces? Newton's dynamics was widely rejected because, unlike both Aristotle's and Descartes's theories, it implied the latter answer to the question" (p. 59). Another example is from paleontology.

Competing paradigms may disagree in basic values. Each theory, even in terms of its own standards, will have its own successes and failures. Which theory should we value more, the successes of one or the successes of the other? Which is the greater liability, the failures of one theory or its rival? Should we regard the successes of a theory as outweighing its failures?

Competing paradigms may use different meanings for the same term, e.g., mass, time, or gravity. While these term may refer to the same phenomena in Newton' and Einstein's physical theories, they are not understood the same.

As the above links show, Kuhn's ideas received plenty of criticism. Parsons is a critic, too, but gives Kuhn some credit.

No comments:

Post a Comment